
Better testing in HotSpot

Leo Korinth

Testing behaviour defined by VM flags
When testing certain HotSpot features, VM flags must be used to enable certain
behaviour. Many features, especially in the GC, compiler and runtime areas
can not be enabled programmatically using function calls. Instead of enabling a
behaviour to an existing VM programmatically, a new VM must be forked, and
the feature must be enabled using command line flags. It would be extremely
hard to change many things after startup, so many things must be set at VM
startup.

When testing a specific feature in hotspot — GC for example — this is natural.
We need to disable compressed class pointers if we want to test non-compressed
class pointers when class pointers are compressed by default. How many such
tests do we need to write to cover usage of non-compressed class pointers? There
is also another dimension to this problem; certain flags interact. Are we to write
tests for infinite combinations of flags?

Many bugs are found in test cases designed to test unrelated things. Would it
not be great if we could reuse — almost — all test cases and run them with our
VM flag combination of interest?

The rest of this post will discuss how to propagate VM options to a testcase,
and by doing so enabling the reuse of the test for testing flag combinations.

Adding VM flags from a test suite
All test cases in OpenJDK written in Java are written in the test framework jtreg.
Runtime flags can be given in the testcase itself, but can also be added to the test-
case by the one running the testcase. Jtreg supports running a testcase with these
extra runtime flags by giving the argument -javaoption(s) to jtreg or modifying
the make command line with something like JTREG='JAVA_OPTIONS=...'

VM flags can also be modified using -vmoption(s) or JTREG='VM_OPTIONS=...';
this is almost never what you want to do. The reason is that these flags will not
only be propagated to the test case but also to javac and other tools when they
are spawned by jtreg.

https://openjdk.org/jtreg/command-help.html
https://github.com/openjdk/jdk/blob/master/doc/testing.md


How VM flags are propagated to a test case
Jtreg test cases are annotated with tags in the beginning of the test cases. These
annotations are not real Java annotations, although they look very similar. They
are Java comments that are parsed by jtreg.

When specifying the @run tag, options can be added describing how to run the
testcase. Two main versions exists:

/othervm (spawn a new VM with each testcase)

/agentvm (reuse a pool of test VMs). This version has two sub modes that can
be set with defaultExecMode in TEST.ROOT for the test suite, and/or can
be set by a command line option to jtreg.

same VM use the same VM to compile and run tests
different VM use different VMs to compile and run tests (not to be

confused with ‘/othervm‘)

What is important to understand is that all these methods will propagate your
JAVA_OPTIONS to the VM your test case is run in, when spawning a new testcase.
A new VM will be spawned if the command line options have changed when
using agentvm.

However, this is the behaviour only when running the main action. If you instead
use the driver action of the @run tag, most VM options set by JAVA_OPTIONS
will be filtered out. I think this is not documented, but the relevant behaviour
can be found in filterJavaOpts in the DriverAction of jtreg. Thus:

• Use main for your normal test cases that are spawned directly by jtreg.
• If your code is a driver, that is, glue code that is used to launch a new JVM,

you should use the driver action to filter JAVA/JVM options to the glue
driver process. You should then use createTestJavaProcessBuilder to
fork your test, and by that propagate the flags to your test JVM.

There is a way to check for which flags was given to the VM being tested from
within the testcase. In the test description a @require tag can be added. It will
test for VM properties, such as active flags.

When VM flags are not propagated to a VM
Although jtreg itself propagates JAVA_OPTIONS, many testcases spawn new VMs
from within a testcase. This is done for multiple reasons: one may be interested
in inspecting the spawned VM or parse its output, or maybe a permutation of
VM flags should be tested. There exists two main APIs for spawning new Java
test processes (and some helper versions calling these as well):

• createLimitedTestJavaProcessBuilder (does not propagate VM flags):
+ This is easy to use (no conflicting JAVA_OPTIONS, no need to @require

absence of conflicting flags)

https://openjdk.org/jtreg/tag-spec.html
https://openjdk.org/jtreg/tag-spec.html#ACTION_TAGS
https://openjdk.org/jtreg/faq.html#how-do-i-specify-whether-to-run-tests-concurrently
https://github.com/openjdk/jdk/blob/master/test/lib/jdk/test/lib/process/ProcessTools.java


+ stable test cases (no dynamic behaviour from clashes between
JAVA_OPTIONS and the additional options added by the testcase)

− no propagation of flags, bad test coverage
• createTestJavaProcessBuilder (does propagate VM flags, behaves as @run):

+ propagation of flags — thus much better test coverage
− unfortunately, as JAVA_FLAGS are propagated, flag combinations not

considered can cause a test crash or timeout
− complicated @require flags can mitigate some problems, but adds

complexity
− complicated @require flags can cause the test to be skipped by mistake,

an easy mistake that is hard to find.

From a superficial glance, createLimitedTestJavaProcessBuilder seems eas-
ier to use, and it is thus understandable that the limited API is used much more
often. 699 occurrences versus 201 as can be seen below:

cd openjdk/test
git switch --detach 86623aa
grep -R createLimitedTestJavaProcessBuilder | wc -l
699
grep -R createTestJavaProcessBuilder | wc -l
201

The heavy usage of this limited API that does not propagate JAVA_OPTIONS
compelled us to change the name and documentation to make it more obvious
that one version is limited when it comes to test coverage. Although jtreg
documentation asks us to respect command line compiler and VM options, it
is easier to write tests correctly if you get help from naming. Especially if you
draw your inspiration from already existing testcases that more often than not,
use the "wrong" API.

Problems when not propagating VM flags
Although createLimitedTestJavaProcessBuilder is easier to use, it comes with
problems.

Test coverage

If we spawn new processes without materializing JAVA_OPTIONS, those flags
might never be tested in combinations with flags that we do test in the test case.
At least at Oracle, we test each test suite with a range of flag combinations. This
is of course expensive, both in equipment and in test time, but it is required to
ensure quality. Each test case that does not propagate JAVA_OPTIONS will not
benefit from this flag rotation.

https://bugs.openjdk.org/browse/JDK-8315097
https://bugs.openjdk.org/browse/JDK-8318962
https://openjdk.org/jtreg/writetests.html#JVMopts


Test performance

If we test a certain test case using a number of flag combinations without
materializing JAVA_OPTIONS, not only do we miss the opportunity of testing
these combinations, but we waste energy and money by running effectively the
same test case several times.

If there is a hard need for not propagating JAVA_OPTIONS, this is uncommon, you
can @require the property vm.flagless. With vm.flagless you will not get
good coverage, but at least the test case will not be run on all flag combinations.

Writing good test cases
If we put a bit more work in the test cases, and accept that we will have crashes
with flags that are not tested in the pipeline, we can make our test cases use
the non-limited createTestJavaProcessBuilder. It is more work and certain flag
combinations might not work, but we will be able to test flags.

The API createLimitedTestJavaProcessBuilder will test only one of count-
less flag combinations. Most testcases could probably benefit being tested with
the interpreter, without compressed oops or maybe with another GC. Most bugs
are found in testcases not created to test for the specific bug.

If we further mark certain test cases with @keyword flag-sensitive we might
filter out test failures easily.

Problems and Solutions
Many of the test cases add their own flags. One can add @require lines so that
the test case flags do not conflict with JAVA_OPTIONS. Unfortunately, adding
too complicated @require lines might add to the risk of never running the test
case by. This is problematic because it is easy to do this slightly wrong and
extremely easy to not find that the tests are skipped. Although test cases do
show as skipped if they are filtered out by @require lines, they look exactly as
if they passed normally if they throw the SkippedException.

Certain test flags must be @required away. For example, you can not say
that you want to use two kinds of GCs. So if you spawn a new process with
a certain GC, you must ensure that another GC was not propagated through
JAVA_OPTIONS.

There is also the case when a flag does not conflict with another flag because
of flag parsing, but will modify its behaviour. This is a bit trickier; we will not
get an as easy to diagnose bug. A test case might fail or time out as a result —
sometimes intermittently.

Worth noting in this discussion is that JAVA_OPTIONS are prepended on the
command line (from my understanding both from @run tags and from the
function calls that spawn new VMs). This is interesting because — usually, but

https://github.com/openjdk/jdk/blob/master/test/jtreg-ext/requires/VMProps.java
https://bugs.openjdk.org/browse/CODETOOLS-7903557
https://bugs.openjdk.org/browse/CODETOOLS-7903557


not always — the latter arguments wins if multiple arguments of the same type
are given. This behaviour makes it slightly easier to write test cases. It has its
pros and cons. Most often the flag your test case uses will override a conflicting
flag given in JAVA_OPTIONS. However, this also highly limits the way we are able
to effectively propagating flags to test cases.

If a testcase is known to be fragile, it can be marked with @keyword
flag-sensitive and then easily filtered out. GC tests need to know the size of
heap and generations and will not work if these test preconditions change. One
might mark these tests with flag-sensitive and if someone tests large test
suites with a flag that modify these preconditions, that tester might filter out
these fragile tests. It is not a perfect solution, but it is no worse than not testing
the flags to begin with.

Conclusion
Although testcases are somewhat easier to write — and made stable — if we do
not propagate JAVA_OPTIONS, extra care should be taken to actually propagate
JAVA_OPTIONS. Our goal must be to test well, and for hotspot tests that means
that many flags must be tested. Ignoring flags will not lead to good testing.

Many tests need no changes at all, and can move from the limited API to the one
that propagates VM flags without further changes. When changes are needed,
we can guard against certain flags using @require lines. Often that is not even
needed as jtreg prepends JAVA_OPTIONS instead of appending them.

If a testcase is fragile when flags change, one may opt to mark it using @keyword
flag-sensitive.


	Testing behaviour defined by VM flags
	Adding VM flags from a test suite
	How VM flags are propagated to a test case
	When VM flags are not propagated to a VM
	Problems when not propagating VM flags
	Test coverage
	Test performance

	Writing good test cases

	Problems and Solutions
	Conclusion

